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Abstract 
In this present work we address the study of Bekenstein-Hawking entropy of Schwarzschild Anti-de 
Sitter (SAdS) black hole by using energy quantization method like Bohr’s atomic model. We have 
also shown that the change of entropy as well as purely thermal emission rate is dependent of 
quantum number and come close to zero for large quantum number. 
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1.  Introduction 
 
In recent times, measuring black holes is a crucial topic of research in quantum gravity theory of 
physics[1]. But no agreeable solution has yet been found for quantization of black holes since 
the radius is theonly parameter of the black holes with no charge and angular momentum and 
as such it is difficult fora researcher to observe what occurs inside from outside. A researcher 
should consider all the conservedinformation on the surface, which is termed as event horizon 
of the black hole. First in 1973, Bekenstein[2] considered the black hole horizon area as an 
adiabatic invariant quantity which is proportional to thearea spectrum and documented as 
black hole entropy [2, 3, 4, 5, 6]. The most raveling truth of black holeradiation [7, 8] was 
discovered by Stephen Hawking in 1975 and since then quite a few research studies havebeen 
made to determine this quantum effect [9]. Currently, the radiation of black holes is called 
‘Hawkingradiation’. The entropic structure given in Ref. [10, 11] undeniably supports new 
thought on quantumproperties of gravity beyond conventional physics. However, the 
quantization of gravity revealed in thispaper should not be interpreted only a support of 
quantization of black hole as an entropic forces [11, 12, 13],it also recommends a new approach 
of unifying gravity with quantum theory. Thus the present study willlead to a new 
understanding and outlook regarding gravity of a black hole. In 1931, Dirac proved thatthe 
existence of magnetic monopoles lead to quantization of electric charge [14]. Alike to the Dirac 
theory,Zee [15] presented a new gravitational analog of Dirac quantization condition in 1985, 
which is popularlyknown as the theory of gravitoelectromagnetism(GEM) [16]. In this GEM 
analogy, the electric charge andthe electric field of Maxwell electromagnetic theory play the role 
of the mass of the test particle and thegravitational acceleration respectively. In GEM theory, the 
source of magnetic field is considered as thesubstance of current density in agreement with the 
Biot-Savart law and is called as GSM magnetic fieldwhich is a divergenceless quantity all over 
the world. In this GEM analogy, Zee [15] has considered theexistence of a gravitipole following 
Dirac. Due to the hypothetical nature of the gravitipole one can splitthe upper bound of energy 
without the quantization effects on energy level splitting in atoms and molecules[15]. One can 
also quantize the mass of the text particle by intensifying the action of the test particle. 
In this study, we have used the method of Simanek [17] to find out the Hawking purely thermal 
emissionrate with the Bekenstein-Hawking Entropy by quantizing the energy having the 
gravitational field of SdSblack hole, which is a non-asymptotically flat solutions to the Einstein-
Maxwell-Dilaton- Axion (EMDA)theory in 4-dimensions. We have quantized the energy of a test 
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particle orbiting SdS black hole from thequantization of angular momentum. It is well-known 
for the spherically symmetric black hole that thecanonical formulation can be developed to 
study quantization by offering a foliation in the radial parametersince it is only a function of the 
Lagrangian coordinates. Although many works on Hawking radiation,entropic force, and higher 
dimensions have been done [18, 19, 20, 21, 22, 23, 24, 25, 26, 27], the quantizationof a black 
hole or it gravity is very limited and as such, there is ample scope for further study.Conversely, 
Zhang and Zhao was first proposed Hawking radiation of black hole from massive 
unchargedparticle tunneling [28] and charged particle tunneling [29,30]. Developing this work, 
a few researches havebeen carried out as charged particle tunneling [31, 32, 33]. Recently, 
Kerner and Mann expanded quantumtunneling methods for analyzing the temperature of Taub-
NUT black holes [34]. Considering Kerner andMann’s process Chen, Zu and Yang reformed 
Hamilton-Jacobi method for massive particle tunneling andinvestigate the Hawking radiation of 
the Taub-NUT black hole [35]. Using this method Hawking radiationof Kerr-NUT black hole [36], 
the charged black hole with a global monopole [37] and Schwarzschild-de Sitterblack hole [38] 
have been reviewed. Apply our previous study SdS black hole [39], we investigate the 
Hawkingradiation and energy quantization for SAdS black hole. 
The plan of this paper is as follows: In Section 2 we investigate the Lagrangian and canonical 
momentafor SAdS black hole. We calculate the effective potential for radial motion of a 
Schwarzschild-anti-de Sittersolution in Section 3. We use these results in Section 4 to study the 
quantization of energy and Hawkingtemperature. In Section 5, we investigate the 
microcanonical ensemble. 
 
2. Investigate the Lagrangian and canonical momenta of SAdSblack hole 
 
The Schwarzschild Anti-de Sitter black hole with mass 𝑀 and a negative cosmological constant 

constant (Λ = 3/ℓ2) can be configured as [38] 

ds2 = −(1 −
2𝑀

𝑟
+
𝑟2

ℓ2) 𝑐
2𝑑𝑡2 + (1 −

2𝑀

𝑟
+
𝑟2

ℓ2)

−1

𝑑𝑟2

+ 𝑟2(𝑑𝜃2 + sin2 𝜃 𝑑𝜑2).                                         (1) 

The coordinates are defined such that −∞ ≤ 𝑡 ≤ ∞, 𝑟 ≥ 0, 0 ≤ 𝜃 ≤ 𝜋, and 0 ≤ 𝜃 ≤ 2𝜋.  The lapse 

function vanished at the zeros of the cubic equation 𝑟3 + ℓ2𝑟 −  2𝑀ℓ2 = 0. Solving this we get 
the real root of the form as [38] 

𝑟𝑆𝐴𝑑𝑆 = 2𝑀(1 −
4𝑀2

ℓ2

+⋯).                                                                                                                               (2) 

When (1 −
4𝑀2

ℓ2 +⋯) > 1which indicate that the SAdS black hole radius is larger than 

SchwarzschildBlack hole (𝑟𝑠 = 2𝑀). For the simplicity we can modify the Eq. (1) of the following 
form 

ds2 = −(1 −
2𝑀

𝑟
(1 −

𝑟3

2Mℓ2)) 𝑐
2𝑑𝑡2 + (1−

2𝑀

𝑟
(1 −

𝑟3

2Mℓ2))

−1

𝑑𝑟2

+ 𝑟2(𝑑𝜃2 + sin2 𝜃 𝑑𝜑2).               (3) 

For the first approximation, using 𝑟0  =  2𝑀 into the above matric (3) we have 

ds2 = −(1 −
2𝑀

𝑟
(1 −

4𝑀2

ℓ2 )) 𝑐
2𝑑𝑡2 + (1−

2𝑀

𝑟
(1 −

4𝑀2

ℓ2 ))

−1

𝑑𝑟2

+ 𝑟2(𝑑𝜃2 + sin2 𝜃 𝑑𝜑2).                   (4) 

Let us consider a test particle of mass m orbiting along the circular geodesics in the equatorial 
plane aroundSAdS black hole. Then according to the Ref. [40, 41] the above metric can be 
written of the form as 
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ds2 = −(1 −
2𝑀

𝑟
(1 −

4𝑀2

ℓ2 )) 𝑐
2𝑑𝑡2 + (1−

2𝑀

𝑟
(1 −

4𝑀2

ℓ2 ))

−1

𝑑𝑟2

+ 𝑟2𝑑𝜑2.                                               (5) 
If we take the black hole mass is larger than the Planck mass so that the Compton radius, 𝑟𝑐 =
ℏ/𝑀𝑐 is verysmallest than the radius of SAdS black hole 𝑟𝑆𝐴𝑑𝑆. For this reason the quantum 
fluctuations of the blackhole disregards [42]. The Lagrangian of the test particle in terms of the 
metric components 𝑔𝑖𝑗 is defined as 

ℒ = 𝑔𝑖𝑗𝑥
𝑖̇ 𝑥 𝑗̇ 

= −
𝑚

2
[(1−

2𝑀

𝑟
(1−

4𝑀2

ℓ2 )) 𝑐
2𝑡̇2 + (1 −

2𝑀

𝑟
(1 −

4𝑀2

ℓ2 ))

−1

𝑟̇2 + 𝑟2 sin2 𝜃 𝜑̇2

+ 𝑟2𝜃̇2].                             (6) 

While the SAdS spacetime is static and spherically symmetric, there exist two constants of 
motion for thetest particles, associated with two Killing vectors in terms of energy 𝐸 and 
angular momentum 𝐿 and the other two components can be written with the help of the 

canonical momenta 𝑝𝛼 =
𝜕ℒ

𝜕𝑥̇𝛼
, defined as 

𝐸 =
1

2

𝜕ℒ

𝜕𝑡̇
= 𝑚𝑚2 (1−

2𝑚

𝑚
(1 −

4𝑀2

ℓ2 )) 𝑡̇;  𝐿 =
1

2

𝜕ℒ

𝜕𝜑̇

= 𝑚𝑟2 sin2 𝜃 𝜑̇.                                                         (7) 

𝑝𝑟 =
𝜕ℒ

𝜕𝑟̇
= 𝑚𝑐2 (1−

2𝑀

𝑟
(1 −

4𝑀2

ℓ2 ))

−1

𝑟̇;  𝑝𝜃 =
𝜕ℒ

𝜕𝜃̇

= 𝑚𝑟2𝜃̇.                                                                          (8) 
 
3. Quantization of Circular Orbit due to Radial motion and Effectivepotential 
 
The radial motion of a geodesic can be written as 

𝑔𝛼𝛼𝑝𝛼
2 +𝑚2𝑐2

= 0,                                                                                                                                                 (9) 
where 𝛼 = 0, 𝑟, 𝜃, 𝜙, and (𝑝0 = 𝐸/𝑐, 𝒑) expresses the magnitude of the energy-momentum. 

Inserting Eqs.(7-8) and using 𝜃̇2 = 0 and sin2 𝜃 = 1the above Eq. (9), we have 

𝐸2

𝑐2
(1 −

2𝑀

𝑟
(1 −

4𝑀2

ℓ2 ))

−1

+𝑚2 (1−
2𝑀

𝑟
(1 −

4𝑀2

ℓ2 ))

−1

𝑟̇2 +
𝐿2

𝑟2
+𝑚2𝑐2

= 0.                                           (10) 

In Ref. [17], we get the energy and angular momentum of the test particle of the form 𝐸̃ =
𝐸

𝑚
,

𝐿̃ =
𝐿

𝑚
.                                                                                                                                                       (11) 

Using the above relation into Eq. (10) we get 

𝑚2𝑐2 [−
𝐸̃2

𝑐2
(1 −

2𝑀

𝑟
(1 −

4𝑀2

ℓ2 ))

−1

+
1

𝑐2
(1−

2𝑀

𝑟
(1 −

4𝑀2

ℓ2 ))

−1

𝑟̇2 +
𝐿̃2

𝑐2𝑟2
+ 1]

= 0.                               (12) 
For the purpose of radial motion of the test particle the above Eq. (12) can be written of the 
form as 

𝑟̇2

2
=
𝐸̃2

2𝑐2
−

1

2
(
𝐿̃2

𝑟2
+ 𝑐2)(1

−
2𝑀

𝑟
(1 −

4𝑀2

ℓ2 )).                                                                                                 (13) 
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We can describe the velocity for the time like particle by the parameters energy 𝐸and angular 
momentumℓ. Thus we have the effective potential 𝑉𝑒𝑓𝑓  for the radial motion can be written of 

the form 

𝑉𝑒𝑓𝑓 =
1

2
(
𝐿̃2

𝑟2
+ 𝑐2)(1 −

2𝑀

𝑟
(1 −

4𝑀2

ℓ2
)).                                                                                               (14) 

For the purpose of maximum potential, taking the first derivative of Eq. (14) with respect to the 
propertime and then equate to zero, we obtain as 

𝑐2

𝑟4
𝑀(1 −

2𝑀

𝑟
(1 −

4𝑀2

ℓ2
)) × (𝑟2 −

𝐿̃2

𝑐2𝑀(1 −
4𝑀2

ℓ2
)
𝑟 +

3𝐿̃2

𝑐2
) = 0.                                                  (15) 

Solving equation (15) we get the two roots of the form 

𝑅± =
𝐿̃2

2𝑐2𝑀(1 −
4𝑀2

ℓ2
)
± [(

𝐿̃2

2𝑐2𝑀(1 −
4𝑀2

ℓ2
)
)

2

−
3𝐿̃2

𝑐2
]

1

2

,                                                                       (16) 

where R is the radius of the circular orbit. Simplifying Eq. (16) can be written as 

𝑅± =
𝐿̃2

2𝑐2𝑀(1 −
4𝑀2

ℓ2
)
×

(

 
 
1 ± (1 −

12𝑐2𝑀2 (1 −
4𝑀2

ℓ2
)
2

𝐿̃2
)

1

2

)

 
 
.                                                           (17) 

 

From the Eq. (17) we observe that 𝑅± is real only when 𝐿̃2 ≥ 12𝑐2𝑀2 (1 −
4𝑀2

ℓ2
)
2

 and for the 

smallest stable orbit, the square root on the right hand side of Eq. (17) vanishes. Therefore, we 
must have 

𝐿̃2 = 12𝑐2𝑀2 (1 −
4𝑀2

ℓ2
)

2

.                                                                                                                            (18)  

According to the conditions 𝐿̃2 ≥ 12𝑐2𝑀(1 −
4𝑀2

ℓ2
)
2

 and 𝐿̃2 >> 12𝑐2𝑀(1 −
4𝑀2

ℓ2
)
2

holds for large 

and largest stable circular orbits, respectively. Angular momentum can be quantized as a 
periodic function of time and help to quantize energy which idea develop by Wilson and 
Sommerfeld [43, 44] and those are closely related to the quantize angular momentum of the 
orbiting test particle. In order to quantize angular momentum 𝐽𝜙 with the help of canonical 

momentum 𝐿 conjugate to the angular variable of the form 

𝐽𝜙 = ∫ 𝐿𝑑∅ = 𝑛

2𝜋

0

ℎ.                                                                                                                                            (19) 

Thus 𝐿 is a constant of motion, Eq. (11) gives the quantization condition for the angular 
momentum of the form 
𝐿 = 𝑚𝐿̃ = 𝑛ℏ,   so that    𝐿̃0 = 𝑛0ℏ/𝑚 .                                                                                                        (20) 
With the help of Compton radius and using Eq. (20) into the Eq. (18) becomes as 

𝑛0
2𝑟𝑐
2 = 12𝑀2 (1 −

4𝑀2

ℓ2
)

2

.                                                                                                                             (21) 

The radius of the different stable circular orbit of the particle corresponds to n0 can be obtained 
by using Eq. (20) into Eq. (17) of the form 

𝑅+ = (
𝑛0
2𝑟𝑐
2

2𝑀 (1 −
4𝑀2

ℓ2
)
)

(

 
 
1 + (1 −

12𝑀2 (1 −
4𝑀2

ℓ2
)
2

𝑛0
2𝑟𝑐
2 )

1

2

)

 
 
.                                                                   (22) 

Inserting Eq. (21) into Eq. (22), we get the approximate radius of the initial circular orbit 𝑅0 as  
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𝑅0 ≈ (
𝑛0
2𝑟𝑐
2

2𝑀 (1 −
4𝑀2

ℓ2
)
).                                                                                                                                    (23) 

In the limiting case when ℓ → ∞ this becomes 𝑅0 = 𝑛0
2 𝑟𝑐

2

𝑟𝑠
and which agree with the result given 

in Ref. [17], where 𝑟𝑠 = 2𝑀 is the Schwarzschild radius. By replacing 𝑛1 = 𝑛0 + 1 in Eq. (22), we 
get the next higher circular orbit 𝑅1 of the form  

𝑅1 = (𝑛0 + 1)
2 (

𝑟𝑐
2

2𝑀 (1 −
4𝑀2

ℓ2
)
)

(

 
 
1 + (1 −

12𝑀2 (1 −
4𝑀2

ℓ2
)
2

𝑟𝑐
2(𝑛0 + 1)

2
)

1

2

)

 
 
.                                                (24) 

For simplicity, let us consider 2𝑀 (1 −
4𝑀2

ℓ2
) ≫ 𝑟𝑐 so that 𝑛0 >> 1. We therefore can be written 

(𝑛0 + 1)
2 = 𝑛0

2 + 2𝑛0 + 1 = 𝑛0
2 [1 +

2

𝑛0
+

1

𝑛0
2] ≈ 𝑛0

2 [1 +
2

𝑛0
]  and using this into Eq. (24) we get 

𝑅1 = 𝑛0
2 (1 +

2

𝑛0
)(

𝑟𝑐
2

2𝑀 (1 −
4𝑀2

ℓ2
)
)

(

 
 
1 + (1 −

12𝑀2 (1 −
4𝑀2

ℓ2
)
2

𝑟𝑐
2(𝑛0 + 1)

2
)

1

2

)

 
 
.                                            (25) 

The parenthesis in the right side of the above equation can be approximated with the help of Eq. 
(21) ofthe form 

1 + (1 −
12𝑀2 (1 −

4𝑀2

ℓ2
)
2

𝑟𝑐
2(𝑛0 + 1)

2
)

1

2

≈ 1 + (1 −
1

(1 +
2

𝑛0
)
2)

1

2

= 1 + √
2

𝑛0
.                                               (26) 

Therefore, Eq. (25) reduced to 

𝑅1 = 𝑅0 (1 +
2

𝑛0
)(1 + √

2

𝑛0
).                                                                                                                      (27) 

Proceeding in this way, the radius of the next higher circular orbit 𝑅2 of the test particle can be 
evaluated from Eq. (22) of the form as 

𝑅2 = 𝑅0 (1 +
4

𝑛0
)(1 + √

4

𝑛0
) = 𝑅1

(1 +
4

𝑛0
) (1 + √

4

𝑛0
)

(1 +
2

𝑛0
) (1 + √

2

𝑛0
)

.                                                                      (28) 

Proceeding in the similar way, the radius of the stable circular orbits of the particle can be 
written as 

𝑅𝑛+1 = 𝑅𝑛

(1 +
2𝑛+2

𝑛0
) (1 + √

2𝑛+2

𝑛0
)

(1 +
2𝑛

𝑛0
) (1 + √

2𝑛

𝑛0
)

.                                                                                                           (29) 

When 𝑛0 → ∞, we observe that 𝑅𝑛+1  =  𝑅𝑛. Therefore, we may consummate that for large 
quantum number two nearby states coincide. 
 
4.Quantized Energy 
 
Our intent is to quantize the energy of the orbiting test particle with the help of angular 
momentum. Thus the equation (13) gives the energy for zero velocity at 𝑟 = 𝑅 of the form as 

𝐸̃2 = 𝑐2 (
𝐿̃2

𝑅2
+ 𝑐2)(1 −

2𝑀 (1 −
4𝑀2

ℓ2
)

𝑅
).                                                                                                  (30) 

But Eq. (15) gives at r = R 
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𝐿̃2

𝑅2
=

𝑐2

(
2𝑅

2𝑀(1−
4𝑀2

ℓ2
)
− 3)

.                                                                                                                                    (31) 

Using Eq. (11) and Eq. (31) into Eq. (30), we have 

𝐸2 = 𝑚2𝑐4 (1 −
2𝑀 (1 −

4𝑀2

ℓ2
)

𝑅
)

2

(1 −
3𝑀 (1 −

4𝑀2

ℓ2
)

𝑅
)

−1

.                                                                 (32) 

Therefore, the above equation can be written as 
 

𝐸 = 𝑚𝑐2 (1 −
2𝑀 (1 −

4𝑀2

ℓ2
)

𝑅
)(1 −

3𝑀 (1 −
4𝑀2

ℓ2
)

𝑅
)

−1/2

.                                                                    (33) 

Using the mechanical stability condition 𝐿̃2 = 𝑀𝐺𝑅 in Eq. (17), the second term in the 
parenthesis of the Eq. (17) canbe written as 

12𝑐2𝑀2 (1 −
4𝑀2

ℓ2
)
2

𝐿̃2
= 3𝑐2

2𝐺𝑀

𝑐2

2𝑀 (1 −
4𝑀2

ℓ2
)

𝑀𝐺𝑅

=
12𝑀 (1 −

4𝑀2

ℓ2
)

𝑅
,                                                                                                             (34) 

which gives with the help of Eq. (18) for the circular orbits corresponding to 𝑛0 >> 1 

12𝑀 (1 −
4𝑀2

ℓ2
)

𝑅
<< 1.                                                                                                                                        (35) 

Therefore, Eq. (33) can be approximated to 

𝐸 ≈ 𝑚𝑐2 (1 −
𝑀 (1 −

4𝑀2

ℓ2
)

𝑅
).                                                                                                                        (36) 

Applying Eq.(18) in Eq.(23) in the following form 

2𝑅 ≈ (
𝑛2𝑟𝑐

2

𝑀(1 −
4𝑀2

ℓ2
)
) = (

𝑛2ℏ2

𝑚2𝑐2𝑀(1 −
4𝑀2

ℓ2
)
) = (

𝐿̃2

𝑐2𝑀(1 −
4𝑀2

ℓ2
)
).                                                (37) 

Substituting Eq. (37) into Eq. (36) we have  

𝐸 ≈ 𝑚𝑐2(1 −
𝑐2𝑀2 (1 −

4𝑀2

ℓ2
)
2

𝐿̃2
).                                                                                                              (38) 

The 𝑛th quantized energy label 𝐸𝑛 can be obtained of the form  

𝐸𝑛 ≈ 𝑚𝑐
2(1 −

𝑐2𝑀2 (1 −
4𝑀2

ℓ2
)
2

𝐿̃𝑛
2 ).                                                                                                            (39) 

Using ℏ = 𝑟𝑐𝑚𝑐 and Eq. (20) into above equation we obtain  

𝐸𝑛 ≈ 𝑚𝑐
2(1 −

𝑀2 (1 −
4𝑀2

ℓ2
)
2

𝑛2𝑟𝑐
2 ).                                                                                                                 (40) 

The corresponding (𝑛 + 1)th label energy can be written from the above Eq. (40) as 

𝐸𝑛+1 ≈ 𝑚𝑐
2(1 −

𝑀2 (1 −
4𝑀2

ℓ2
)
2

𝑟𝑐
2(𝑛 + 1)2

).                                                                                                             (41) 

Therefore, the quantized energy difference between two nearby states of the form as 
𝛿𝐸 = 𝐸𝑛+1 − 𝐸𝑛 
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≈
𝑚𝑐2

𝑟𝑐
2 [

1

𝑛2
−

1

(𝑛 + 1)2
]𝑀2 (1 −

4𝑀2

ℓ2
)

2

.                                                                                                    (42) 

Neglecting the 4th and the higher powers of (𝑀/ℓ)  of the SAdS black hole radius, which gives 
Eq. (2) then we have 

𝑟𝑆𝐴𝑑𝑆 ≈ 2𝑀(1 −
4𝑀2

ℓ2
).                                                                                                                                   (43) 

We observe that when ℓ → ∞ then𝑟𝑆𝐴𝑑𝑆 ≈ 𝑟𝑆.Therefore, the Eq. (42) can be written for SAdS 
black hole 

𝛿𝐸 ≈
𝑚𝑐2𝑟𝑆𝐴𝑑𝑆

2

4𝑟𝑐
2 [

1

𝑛2
−

1

(𝑛 + 1)2
]

2

.                                                                                                                 (44) 

For large values of 𝑛, the bracket can be replaced by 2/𝑛3 so that 

𝛿𝐸 ≈
𝑚3𝑐4𝑟𝑆𝐴𝑑𝑆

2

2ℏ2𝑛3
=
𝑐4𝑚3

2ℏ2𝑛3
× 4𝑀2 (1 −

4𝑀2

ℓ2
)

2

  .                                                                                      (45) 

We observe that when 𝑛 increase then 𝛿𝐸decreases. As 𝑛 → ∞ we have shown that the change 
of energy between two nearby states becomes zero. 
 
5. Concluding Remarks 
 
In this paper, we have presented the change of entropy for two nearby circular orbit around 
Schwarzschild Anti-de Sitter Black Hole by Energy Quantization process. We have also found the 
different energy labels ofSAdS black hole in nature can be performed in the same way as that for 
the electron signal inside the atom like Bohr’s quantum theory and leads to the results on 
quantization of black hole [45]. 
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